Skip to main content

Community Repository Search Results

resource project Public Programs
Science identity has been shown to be a necessary precondition to academic success and persistence in science trajectories. Further, science identities are formed, in large part, due to the kinds of access, real or perceived, that (racialized) learners have to science spaces. For Black and Latinx youth, in particular, mainstream ideas of science as a discipline and as a culture in the US recognize and support certain learners and marginalize others. Without developing identities as learners who can do science, or can become future scientists, these young people are not likely to pursue careers in any scientific field. There are demonstrable links between positive science identities and the material and social resources provided by particular places. Thus, whether young people can see themselves as scientists, or even feel that they have access to science practices, also depends on where they are learning it. The overarching goal of this project is to broaden participation of Black and Latinx youth in science by deepening our understanding of both science identities and how science learning spaces may be better designed to support the development of positive science identities of these learners. By deepening the field’s knowledge of how science learning spaces shape science identities, science educators can design more equitable learning spaces that leverage the spatial aspects of program location, culturally relevant curriculum, and participants’ lived experiences. A more expansive understanding of positive science identities allows educators to recognize these in Black and Latinx learners, and direct their continued science engagements accordingly, as positive identities lead to greater persistence in science. This project is a collaboration between researchers at New York University and those at a New York City informal science organization, BioBus. It is funded by the Advancing Informal STEM Learning (AISL) Program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

This participatory design research project will compare three different formats, in different settings, of afterschool science programming for middle schoolers: one located in a lab space on the campus of a nearby university, one located in the public middle school building of participating students, and one aboard a mobile science lab. For purposes of this study, the construct of “setting” refers to the dimensions of geographic location, built physical environment, and material resources. Setting is not static, but instead social and relational: it is dynamically (co)constructed and experienced in activity by individuals and in interaction by groups of individuals. Therefore, the three BioBus programming types allow for productive comparison not only because of their different geographic locations, built environments, and material resources (e.g., scientific tools), but also the existing relationships learners may have with these places, as well as the instructional designs and pedagogical practices that BioBus teaching scientists use in each. This project uses a design-based research approach to answer the following research questions: (1) How do the settings of science learning shape science identity development? What are different positive science identities that may emerge from these relationships? And (2) What are ways to leverage different spatial aspects of informal science programming and instruction to support positive science identities? The study uses ethnographic and micro-analytic methods to develop better understandings of the relationships between setting and science identity development, uncover a broad range of types of positive science identities taken up by our Black and Latinx students, and inform informal science education to design for and leverage spatial aspects of programming and instruction. Findings will contribute to a systematic knowledge base bringing together spatial aspects of informal science education and science identity and identity development, and provide new tools for informal science educators, including design principles for incorporating spatial factors into program and lesson planning.
DATE: -
TEAM MEMBERS: Jasmine Ma Latasha Wright Roya Heydari
resource evaluation Exhibitions
The Northwest Passage Project explored the changing Arctic through an innovative expedition aboard the Swedish Icebreaker Oden to conduct groundbreaking ocean science research, while it actively engaged 22 undergraduate and graduate students from the project’s five Minority Serving Institution (MSI) partners and 2 early career Inuit researchers in the research at sea. Over 35 hours of training in Arctic research techniques, polar science, and science communication was provided to these participants, who were engaged in the Northwest Passage expedition and worked with the onboard science team
DATE:
TEAM MEMBERS: Gail Scowcroft Jeff Hayward
resource project Media and Technology
The goal of this project is to promote informal STEM education in polar research through a novel interactive learning display that uses virtual and augmented reality technology. A new display system will be developed that combines the successful techniques of touch-enabled tabletop displays with new low-cost, head-mounted display technology to deliver an immersive 3D learning experience for the IceCube Neutrino Detection system located at the South Pole. The system will provide new means for engaging the public in learning about the IceCube Neutrino Dectection system and the challenges of Antarctic research.

The proposal relies on collaboration between three groups on the University of Wisconsin- Madison campus, including the Living Environments Laboratory (LEL), the Wisconsin IceCube Particle Astrophysics Center (WIPAC), and the Games Learning Society (GLS). Once developed, the display system will be installed at the Wisconsin Institutes for Discovery Town Center, a public space that attracts close to 50,000 people per year. This proposal was submitted as an Exploratory Pathways proposal, meaning that it represents a chance to establish the basis for future research, design, and development of innovations or approaches. Outcomes from this project will inform the PIs of how best to extend the system to add more 3D environments for other research locations in Antarctica. The system will be implemented in an extensible fashion so that a user can select from one of several Antarctic research station locations, not just IceCube, from the main menu of the system and suddenly be immersed in a 3D world that seeks to teach users about polar research at that location. Contents of the interactive learning display will be translated into Spanish, and users will be able to choose which language they want to use. Evaluations of the system will also inform designers about how these museum-type systems impact learning outcomes for the general public.

This project was submitted to the Advancing Informal STEM Learning (AISL) program, but will be funded by the Division of Polar Programs. AISL seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Kevin Ponto
resource project Media and Technology
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by engaging in hands-on field experience, laboratory/project-based entrepreneurship tasks and mentorship experiences.

Twin Cities Public Television project on Gender Equitable Teaching Practices in Career and Technical Education Pathways for High School Girls is designed to help career and technical education educators and guidance counselors recruit and retain more high school girls from diverse backgrounds in science, technology, engineering and math (STEM) pathways, specifically in technology and engineering. The project's goals are: 1) To increase the number of high school girls, including ethnic minorities, recruited and retained in traditionally male -STEM pathways; 2) To enhance the teaching and coaching practices of Career and Technical Education educators, counselors and role models with gender equitable and culturally responsive strategies; 3) To research the impacts of strategies and role model experiences on girls' interest in STEM careers; 4) To evaluate the effectiveness of training in these strategies for educators, counselors and role models; and 5) To develop training that can easily be scaled up to reach a much larger audience. The research hypothesis is that girls will develop more positive STEM identities and interests when their educators employ research-based, gender-equitable and culturally responsive teaching practices enhanced with female STEM role models. Instructional modules and media-based online resources for Minnesota high school Career and Technical Education programs will be developed in the Twin Cities of Minneapolis and St. Paul and piloted in districts with strong community college and industry partnerships. Twin Cities Public Television will partner with STEM and gender equity researchers from St. Catherine University in St. Paul, the National Girls Collaborative, the University of Colorado-Boulder (CU-Boulder), the Minnesota Department of Education and the Minnesota State Colleges and Universities System.

The project will examine girls' personal experiences with equitable strategies embedded into classroom STEM content and complementary mentoring experiences, both live and video-based. It will explore how these experiences contribute to girls' STEM-related identity construction against gender-based stereotypes. It will also determine the extent girls' exposure to female STEM role models impact their Career and Technical Education studies and STEM career aspirations. The study will employ and examine short-form autobiographical videos created and shared by participating girls to gain insight into their STEM classroom and role model experiences. Empowering girls to respond to the ways their Career and Technical Education educators and guidance counselors guide them toward technology and engineering careers will provide a valuable perspective on educational practice and advance the STEM education field.
DATE: -
TEAM MEMBERS: Rita Karl Brenda Britsch Siri Anderson
resource research Summer and Extended Camps
Increased emphasis on K-12 engineering education, including the advent and incorporation of NGSS in many curricula, has spurred the need for increased engineering learning opportunities for younger students. This is particularly true for students from underrepresented minority populations or economically disadvantaged schools, who traditionally lag their peers in the pursuit of STEM majors or careers. To address this deficit, we have created the Hk Maker Lab, a summer program for New York City high school students that introduces them to biomedical engineering design. The students learn the
DATE:
TEAM MEMBERS: Aaron Matthew Kyle Michael Carapezza Christine Kovich
resource project Public Programs
The primary goal of MAST-3 is to increase the diversity of students, particularly those from underrepresented groups, electing careers in NOAA related marine sciences. This is done through a multidisciplinary program that engages students in NOAA-related marine research, and explores marine policy, the heritage of African Americans and Native Americans in the coastal environment, and seamanship. MAST students use the Chesapeake Bay to understand efforts to protect, restore and manage the use of coastal and ocean resources through an ecosystem approach to management. To do this, Hampton University has formed partnerships with various NOAA labs/sites, several university laboratories, the USEPA, various museums, the Chesapeake Bay Foundation, and the menhaden fishing industry.
DATE: -
TEAM MEMBERS: Benjamin Cuker
resource research Public Programs
Learn how to create opportunities for young people from low-income, ethnically diverse communities to learn about growing food, doing science, and how science can help them contribute to their community in positive ways. The authors developed a program that integrates hydroponics (a method of growing plants indoors without soil) into both in-school and out-of-school educational settings.
DATE:
TEAM MEMBERS: Amie Patchen Andrea Aeschlimann Anne Vera-Cruz Anushree Kamath Deborah Jose Jackie DeLisi Michael Barnett Paul Madden Rajeev Rupani
resource project Public Programs
A non-technical description of the project test explains its significance and importance.

The goal of this project is to help students easily identify themselves as science or engineering professionals and increase the proportion of the local population, dominantly minorities, who pursue science and technology careers. Experience has demonstrated that students are most engaged in technical fields when they can participate in active, hands-on learning around problems with application to their local community. The focus of the effort is in marine science, which has local relevance to both the environment and the economy of the U.S. Virgin Islands. The project will use interventions at three crucial stages: middle school, high-school-college transition, and master-PhD transition, to engage students with specific active-learning and research-oriented programs. Community partners comprise a wide-ranging local organization that leverages the resources of other successful collaborations.

A technical description of the project

This project will create a transferable model that uses innovative partnerships among universities, governmental and non-governmental organizations, a professional society, and businesses, to create a local backbone organization with a shared vision for change and common success metrics broaden participation in science, technology, engineering, and mathematics (STEM). This project addresses the critical challenge of building scientific identity to increase interest and engagement of underrepresented minorities in STEM fields in the U.S. Virgin Islands. The plan includes targeted interventions at three significant times in the student career pathway (middle/high school, early college, and graduate school) that comprise: (1) field experiences in the marine sciences for middle/high school students, (2) early field research experiences for college freshmen and sophomore students, (3) bridge programming to a Ph.D. partnership with Pennsylvania State University, and (4) an intensive mentoring program. The model is grounded in social innovation theory through a framework that meets the five conditions for collective impact: common agenda, shared measurement of data and results, mutually reinforcing activities, continuous communication, and backbone support.
DATE: -
TEAM MEMBERS: Kristin Wilson Grimes Marilyn Brandt Nastassia Jones Carrie Bucklin Monica Medina
resource project Public Programs
The "Mentored Youth Building Employable Skills in Technology (MyBEST)" project, a collaboration of the Youth Science Center (YSC) and Learning Technology Center (LTC) at the Science Museum of Minnesota, is a three-year, youth-based proposal that seeks to engage 200 inner-city youngsters in learning experiences involving information and design technologies. The goal of the project is to develop participants' IT fluency coupled with work- and academic-related skills. The program will serve students in grades 7 through 12 with special emphasis on three underrepresented groups: girls, youngsters of color, and the economically disadvantaged. Project participants will receive 130 contact hours and 70% will receive at least 160 hours. Each project year, including summers, students participate in three seasons consisting of five two-week cycles. Project activities will center on an annual technology theme: design, engineering and invention; social and environmental systems; and networks and communication. The activities that constitute project seasons include guest presenter workshops; open labs facilitated by guest presenters, mentors and adult staff; presentations of student projects; career workshops and field trips. The project cycles feature programming (e.g., Logo computer language; Cricketalk), engineering and multi-media production (e.g., digital video; non-linear editing software). Each cycle will interface with an existing museum-related program (e.g., the NSF-funded traveling Cyborg exhibit). Mentors will work alongside participants in all technology-based activities. These mentors will be recruited from university, business, community partners and participant families. Leadership development is addressed through teamwork and in the form of internships and externships. Participants obtain work experience related to technology in the internship and externship component. The "MyBEST" project will serve as a prototype for the Museum to test the introduction of technology as central to the design and learning outcomes of its youth-based programs. An advisory board reflecting expertise in youth development, technology and informal science education will guide the program's development and plans for sustainability. Core elements of the "MyBEST" program will be integrated into the Museum's youth-based projects sponsored by the YSC and LTC departments. The Museum has a strong record of integrating prototype initiatives into long-standing programs.
DATE: -
TEAM MEMBERS: Keith Braafladt Kristen Murray Mary Ann Steiner
resource evaluation Public Programs
The Koshland Youth Research Lab (Research Lab) began as an eight-month pilot program funded by the DEK Family Fund at the San Francisco Foundation. The project (initially implemented in 2011) used frontend and formative evaluation to develop the program in line with the needs and interests of its target audience of Hispanic youth. The summative evaluation took place in the last month of the program (December 2011). Researchers from UXR Consulting, Inc. were engaged to conduct all phases of the evaluation. This report includes the interview protocol and surveys used in the study.
DATE:
TEAM MEMBERS: Jes A. Koepfler Koshland Science Museum
resource evaluation Public Programs
This front-end study aimed to capture baseline information about students' science interests and skills in support of the development of a new program called the Koshland Youth Research Lab. Specifically, the evaluation was driven by the following questions: 1) What are students' current attitudes and interests toward four selected science topics: adolescent sleep needs, teen sexuality and risky behaviors, water quality in your community, and adolescent health and nutrition? 2) What are students' current knowledge and skills with regard to scientific research methods and research design? Data
DATE:
TEAM MEMBERS: Jes A. Koepfler Marian Koshland Science Museum
resource project Public Programs
Having developed the concept of near-peer mentorship at the middle school/high school level and utilized it in a summer science education enhancement program now called Gains in the Education of Mathematics and Science or GEMS at the Walter Reed Army Institute of Research (WRAIR), it is now our goal to ultimately expand this program into an extensive, research institute-based source of young, specially selected, near-peer mentors armed with kits, tools, teacher-student developed curricula, enthusiasm, time and talent for science teaching in the urban District of Columbia Public Schools (specific schools) and several more rural disadvantaged schools (Frederick and Howard Counties) in science teaching. We describe this program as a new in-school component, involving science clubs and lunch programs, patterned after our valuable summer science training modules and mentorship program. Our in-house program is at its maximum capacity at the Institute. Near-peer mentors will work in WRAIR's individual laboratories while perfecting/adapting hands-on activities for the new GEMS-X program to be carried out at McKinley Technology HS, Marian Koshland Museum, Roots Charter School and Lincoln Junior HS in DC, West Frederick Middle School, Frederick, MD and Folly Quarter Middle School and Glenelg HS, in Howard County, MD. Based on local demographics in these urban/rural areas, minority and disadvantaged youth, men and women, may choose science, mathematics, engineering and technology (SMET) careers with increasing frequency after participating, at such an early age, in specific learning in the quantitative disciplines. Many of these students take challenging courses within their schools, vastly improve their standardized test scores, take on internship opportunities, are provided recommendations from scientists and medical staff and ultimately are able to enter health professions that were previously unattainable. Relevance to Public Health: The Gains in the Education of Mathematis and Science (GEMS) program educates a diverse student population to benefit their science education and ultimately may improve the likelihood of successfully entry into a health or health-related professions for participating individuals. Medical education has been show to improve public health.
DATE: -
TEAM MEMBERS: Debra Yourick Marti Jett