Skip to main content

Community Repository Search Results

resource project Exhibitions
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).

The Accessible Oceans study will design auditory displays that support learning and understanding of ocean data in informal learning environments like museums, science centers, and aquariums. Most data presentations in these spaces use visual display techniques such as graphs, charts, and computer-generated visualizations, resulting in inequitable access for learners with vision impairment or other print-related disabilities. While music, sound effects, and environmental sounds are sometimes used, these audio methods are inadequate for conveying quantitative information. The project will use sonification (turning data into sound) to convey meaningful aspects of ocean science data to increase access to ocean data and ocean literacy. The project will advance knowledge on the design of auditory displays for all learners, with and without disabilities, as well as advance the use of technology for STEM formal and informal education. The study will include 425 participants but will reach tens of thousands through the development of education materials, public reporting, and social media. The study will partner with the Smithsonian National Museum of Natural History, Woods Hole Oceanographic Institution Ocean Discovery Center, the Georgia Aquarium, the Eugene Science Center, the Atlanta Center for the Visually Impaired, and Perkins School for the Blind.

The project will leverage existing educational ocean datasets from the NSF-funded Ocean Observatories Initiative to produce and evaluate the feasibility of using integrated auditory displays to communicate tiered learning objectives of oceanographic principles. Integrated auditory displays will each be comprised of a data sonification and a context-setting audio introduction that will help to make sure all users start with the same basic information about the phenomenon. The displays will be developed through a user-centered design process that will engage ocean science experts, visually impaired students and adults (and their teachers), and design-oriented undergraduate and graduate students. The project will support advocacy skills for inclusive design and will provide valuable training opportunities for graduate and undergraduate students in human-centered design and accessibility. The project will have foundational utility in auditory display, STEM education, human-computer interaction, and other disciplines, contributing new strategies for representing quantitative information that can be applied across STEM disciplines that use similar visual data displays. The project will generate publicly accessible resources to advance studies of inclusive approaches on motivating learners with and without disabilities to learn more about and consider careers in STEM.

This Pilots and Feasibility Studies project is supported by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Amy Bower Carrie Bruce Jon Bellona
resource project Exhibitions
Informal STEM learning environments, programs, and policies can be designed to support and promote neurodiversity through inclusive practices. This project will explore the benefits of informal STEM learning for K-12 neurodiverse learners through a systematic review and meta-analysis of extant literature and research grounded in the theory of social model of ability. This framework is an asset-based approach and aims to promote social, cognitive, and physical inclusion, leading to positive outcomes. Using various quantitative and qualitative methodologies, this project endeavors to collect and synthesize the evidence for supporting and enhancing accessibility and inclusiveness in informal STEM learning for K-12 neurodiverse learners. It will explore key features of informal STEM learning and effective, evidence-based strategies to effectively engage children and youth with neurological conditions such as autism spectrum disorder, attention deficit hyperactivity disorder (ADHD), dyslexia, and dyspraxia, in informal STEM learning environments. The findings of this complex synthesis will provide a timely contribution to deeper understanding of supports for neurodiversity while also highlighting areas that inform further research, shifts in practice, and policy.

The systematic review will occur over a two-year period. It will focus on identifying program elements that promote inclusion of children and youth with neurodevelopmental disabilities in informal STEM learning contexts. Specifically, the review will explore two overarching research questions and several sub-research questions:


RQ1. What program elements (teaching and learning variables) in informal STEM learning settings facilitate inclusion of K-12 neurodiverse STEM learners? Sub-RQ1a: What are the overlapping and discrete characteristics of the program elements that facilitate social, cognitive, and physical inclusion?

Sub-RQ1b: In what ways do the program elements that facilitate inclusion vary by informal STEM learning setting?


RQ2: What program elements (teaching and learning variables) in informal STEM learning settings are correlated with benefits for K-12 neurodiverse STEM learners? Sub-RQ2a: What are the overlapping and discrete characteristics of the program elements that correlate with increased STEM identity, self- efficacy, interest in STEM, or STEM learning?

Sub-RQ2b: In what ways do the program elements that correlate with positive results for students vary by informal STEM learning setting? The research synthesis will consider several different types of studies, including research and evaluation; experimental and quasi-experimental designs; quantitative, qualitative, and mixed methods; and implementation studies.




The research team will (a) review all analyses and organize findings to illustrate patterns, factors, and relationships, (b) identify key distinctions and nuances derived from the contexts represented in the literature, and (c) revisit and confirm the strength of evidence for making overall assertions of what works, why, and with whom. The findings will be disseminated in practice briefs, journal articles, the AISL resource center, as well as presentations and materials for researchers, practitioners, and informal STEM leaders. Ultimately, this work will result in a comprehensive synthesis of effective informal STEM learning practices for neurodiverse K-12 learners and identify opportunities for further research and development.

This literature review and meta-analysis project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
DATE: -
TEAM MEMBERS: Ronda Jenson Kelly Roberts
resource project Public Programs
Many people with autism are unemployed and isolated because they do not have access to educational opportunities that support them in finding jobs that match their potential. This research seeks to empower adolescents with autism to seek out careers that are well-matched with their strengths and interests. Many people with autism are interested in computing, a marketable skill. This project builds from this interest by developing strategies to effectively engage teenagers with autism. Although people with autism share a diagnosis, each person is unique and has the capacity to become a visionary and transformer in society in their own way. Teenagers with autism will be invited to participate in a game design workshop hosted by an award-winning, not-for-profit Tech Kids Unlimited. Teenagers often enjoy learning how to design games and can learn many useful skills through design. During each workshop, teenagers will rate different teaching strategies using a picture-based survey developed in collaboration with people with autism. It is expected that teenagers with autism who have difficulty focusing to be most engaged by strategies that include multiple types of information (for example, pictures, text, and speech). The team also expects those who are more focused to be most engaged by strategies with fewer sources of information. By developing clear guidelines to help educators match their teaching styles to how different students learn, the project will help them engage youth more effectively. Through an iterative process, the team will revise the game design workshop to make it more engaging for people with different types of autism. New groups of teenagers with autism will participate in improved game design workshops that include an internship in a technology company. An important outcome is to understand which strategies are engaging for young people with autism that help them develop the belief in their skills needed to seek out fulfilling careers. This award is funded by the Advanced Informal STEM Learning program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.

This Research in Service to Practice project has the following aims: 1) Identify evidence-based strategies to engage youth with autism spectrum disorder (ASD) in informal STEM learning opportunities that are well matched to their attentional profiles, 2) Determine if engaging youth with ASD in informal STEM learning opportunities increases their STEM self-efficacy, and 3) Determine if engagement with STEM internship activities is associated with increased interest in STEM careers and career decision-making self-efficacy. Principles of Universal Design (UD) and Mayer's principles of effective multimedia instruction are frameworks employed to identify instructional strategies that are emotionally engaging for youth with diverse attentional profiles. The degree to which attentional differences contribute to different patterns of emotional engagement with informal STEM learning will be investigated. Guided by assessments of youth's engagement with different learning opportunities, 'diversity blueprints' or specific instructional strategies that help youth with diverse attentional profiles engage will be developed. After identifying strategies to engage neurodivergent (neurologically diverse) youth in informal STEM learning opportunities, the extent to which these strategies generalize to STEM internship sites will be explored. The team will study potential specificity of the types of contexts that promote different types of self-efficacy, with engagement with extracurricular STEM learning opportunities expected to preferentially target STEM self-efficacy while engagement with internships targets career decision-making self-efficacy. Although UD is often endorsed to promote STEM learning among students with disabilities, the proposed research would be the first iterative adaptation of instructional strategies designed to engage neurodivergent teens in informal STEM learning guided by a systematic analysis of how they engage with and feel about instructional strategies. Project deliverables include workshops for local after-school program providers, publications, a project website, and a multimodal guide of the process of developing 'diversity blueprints' and how to apply them for informal STEM educators and researchers.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Amy Hurst Katie Gillespie
resource project Professional Development and Workshops
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. Blind youth are generally excluded from STEM learning and careers because materials for their education are often composed for sighted individuals. In this proposed Innovations in Development project, the PIs suggest that spatial acuity is an important element in order for blind persons to understand physical and mental structures. Thus, in this investigation, efforts will be made to educated blind youth in the discipline of engineering. A total of 200 blind students, ages 12-20 along with 30 informal STEM educators will participate in the program. This effort is shared with the National Federation of the Blind, Utah State University, the Science Museum of Minnesota, and the Lifelong Learning Group.

The National Federation of the Blind, in partnership with scholars from Utah State University and educators from the Science Museum of Minnesota will develop a five-year Innovations in Development project in order to broaden the participation of blind students in STEM fields through the development of instruction and accessible tools that assess and improve the spatial ability of blind youth. The partnership with the Science Museum will facilitate the creation of informal science content for students and professional development opportunities for informal educators. Evaluation will be conducted by Lifelong Learning Group of the Columbus Center of Science and Industry. Activities will begin in year one with a week-long, engineering design program for thirty blind high-school students at the Federation of the blind headquarters in Baltimore. Year two will feature two similarly sized programs, taking place at the Science Museum. While spatial ability is linked to performance in science, research has not been pursued as to how that ability can be assessed, developed, and improved in blind youth. Further, educators are often unaware of ways to deliver science concepts to blind students in a spatially enhanced manner, and students do not know how to advocate for these accommodations, leading blind youth to abandon science directions. Literature on the influences of a community of practice on youth with disabilities, as well as nonvisual tools for experiencing engineering, is lacking. This project will advance understanding of how blind people can participate in science, and how spatial ability can be developed and bolstered through informal engineering activities and an existing community of practice.
DATE: -
TEAM MEMBERS: Anil Lewis Wade Goodridge