Skip to main content

Community Repository Search Results

resource project Media and Technology
EcoExploratorio: Museo de Ciencias de Puerto Rico’s In-STEM: An Inclusive STEM Museum Exhibition project will provide STEM educational material specifically for audiences with visual and hearing disabilities. In addition to an inclusive summer Moon to Mars exhibit, the museum will offer tours with American Sign Languages (ASL) interpreters and adaptations for the visually impaired. Accessible online, the museum will produce ten STEM activity videos. By being inclusive of people with disabilities, specifically focusing on people that are deaf or hard of hearing and blind or visually impaired, the museum seeks to promote lifelong access to STEM education.
DATE: -
TEAM MEMBERS: Jenny Guevara
resource project Media and Technology
Virtual Reality (VR) shows promise to broaden participation in STEM by engaging learners in authentic but otherwise inaccessible learning experiences. The immersion in authentic learner environments, along with social presence and learner agency, that is enabled by VR helps form memorable learning experiences. VR is emerging as a promising tool for children with autism. While there is wide variation in the way people with autism present, one common set of needs associated with autism that can be addressed with VR is sensory processing. This project will research and model how VR can be used to minimize barriers for learners with autism, while also incorporating complementary universal designs for learning (UDL) principles to promote broad participation in STEM learning. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This project will build on a prototype VR simulation, Mission to Europa Prime, that transports learners to a space station for exploration on Jupiter's moon Europa, a strong candidate for future discovery of extraterrestrial life and a location no human can currently experience in person. The prototype simulation will be expanded to create a full, immersive STEM-based experience that will enable learners who often encounter cognitive, social, and emotional barriers to STEM learning in public spaces, particularly learners with autism, to fully engage and benefit from this STEM-learning experience. The simulation will include a variety of STEM-learning puzzles, addressing science, mathematics, engineering, and computational thinking through authentic and interesting problem-solving tasks. The project team's learning designers and researchers will co-design puzzles and user interfaces with students at a post-secondary institute for learners with autism and other learning differences. The full VR STEM-learning simulation will be broadly disseminated to museums and other informal education programs, and distributed to other communities.

Project research is designed to advance knowledge about VR-based informal STEM learning and the affordances of VR to support learners with autism. To broaden STEM participation for all, the project brings together research at the intersection of STEM learning, cognitive and educational neuroscience, and the human-technology frontier. The simulation will be designed to provide agency for learners to adjust a STEM-learning VR experience for their unique sensory processing, attention, and social anxiety needs. The project will use a participatory design process will ensure the VR experience is designed to reduce barriers that currently exclude learners with autism and related conditions from many informal learning opportunities, broadening participation in informal STEM learning. Design research, usability, and efficacy studies will be conducted with teens and adults at the Pacific Science Center and Boston Museum of Science, which serve audiences with autism, along with the general public. Project research is grounded in prior NSF-funded research and leverages the team's expertise in STEM learning simulations, VR development, cognitive psychology, universal design, and informal science education, as well as the vital expertise of the end-user target audience, learners with autism. In addition to being shared at conferences, the research findings will be submitted for publication to peer-reviewed journals for researchers and to appropriate publications for VR developers and disseminators, museum programs, neurodiverse communities and other potentially interested parties.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Teon Edwards Jodi Asbell-Clarke Jamie Larsen Ibrahim Dahlstrom-Hakki
resource project Public Programs
The Rochester Institute of Technology's National Technical Institute for the Deaf (NTID) and Center for Computational Relativity and Gravitation (CCRG) will collaborate on a CRPA project designed to develop a dance-based performance to educate deaf and hard of hearing students on astrophysics concepts. This project seeks to address the following goals: 1) provide all audience members with access to scientific information in an inherently engaging and stimulating manner; 2) facilitate the acquisition of scientific knowledge in all audience members, including deaf and hard-of-hearing individuals, with special reference to general information and basic concepts from the fields of gravitational physics and astrophysics; and 3) stimulate general interest in STEM fields within all audience members. An extensive team of physicists, arts faculty, computer scientists, performance experts, and evaluators have assembled to translate original research on gravity-based astrophysics, including collision events between black-holes and neutron-stars, entire galaxies, and the central black-hole engine that powers active galactic nuclei, into novel educational presentations. The original science to be presented was generated in part by the scientists at the Center for Computational Relativity and Gravitation. Project deliverables include live performances and a project website with educational materials and a virtual tour of the recorded performance. The live performances will include dance and computer generated visualizations of space phenomena, supplemented with discussion and interactive components to engage audiences both before and after the presentation. The mixed-method evaluation will provide insights into how the medium of dance can be used to engage audiences in STEM fields and increase the understanding of STEM content areas which have had little previous investigation, but may be highly relevant to the engagement of underserved audiences. Performances are planned for select sites in New York, Ohio, Connecticut, Rhode Island, Washington, DC, Pennsylvania and Maryland. It is estimated that the project will directly impact 7,000 individuals, approximately half of whom will be deaf or hard or hearing. Deaf and hard of hearing populations are greatly underserved in science education. This project is an effort to bridge that gap by providing creative models for communicating to the public on contemporary science concepts. Learning outcomes for the target audience include increasing awareness and interest in STEM, acquisition of information and basic concepts from the fields of gravitational physics and astrophysics, and enhancing awareness of relationships among science and the arts. Project activities will be disseminated through the website hosted by the Rochester Institute of Technology, as well as social networking sites including Facebook, Twitter, and Google+. The project will also be promoted through science festivals and media events.
DATE: -
TEAM MEMBERS: Manuela Campanelli Hans-Peter Bischof Jacob Noel-Storr
resource project Media and Technology
The proposal intends to develop software that, when combined with the OMNI device, produces a virtual touch sensation that allows the blind to "touch" surfaces such as Mars, Earth's Moon, etc. The experience is multimedia as users can get sight, sound, and touch at the same time. The proposal does a solid job of describing a well-constructed and well-designed plan. The collaborative group works to bring together a strong body of STEM material, a highly skilled project team, and a diverse audience to assess the material. The team brought together to implement the proposal is a good one and includes the Institute for Scientific Research, NASA IV and V Independent Verification and Validation, Facility Educator Resource Center, Alderson Broadus College, Davis & Elkins College, and the West Virginia Schools for the Deaf and Blind. Although NASA is a project partner, the reviewers encourage the project proposer to continue building direct NASA funding. For example, a NASA space grant may be a good dissemination vehicle in the future. Reviewers were impressed with the various project elements: the mobile unit, pre- and post- standards based lessons, hypothesis testing with immediate feedback. The evaluation and dissemination plans provide for effective and immediate impact on a statewide and national level. The project provides for broader impact as the multi-media tools will be of assistance to other groups of students with disabilities as well.
DATE: -
TEAM MEMBERS: Marjorie Darrah Patricia Harris Sharmistha Roy Amy Blake Rebecca Giorcelli