Skip to main content

Community Repository Search Results

resource project Public Programs
The Aldrich Contemporary Art Museum will amplify its partnership with Hart Magnet School, a Title 1 elementary school in urban Stamford, Connecticut, by increasing exposure and access to the arts for first-fifth graders, their families, and educators. A new program model, leveraging the museum's artist exhibitions, will focus on technology and an inquiry-based approach to science. Students, educators, and families will be encouraged to see and think in new ways through on-site STEAM tours at the museum, artist-led workshops at Hart, teacher professional development, and afterschool family activities. Outside evaluators will work with the project team to develop goals and associated metrics to measure how the model of museum-school partnership can enhance student achievement, engage families more deeply in their child's school experience and community, and contribute to teacher professional development. The evaluator will also train museum staff on best practices for program assessment.
DATE: -
TEAM MEMBERS: Namulen Bayarsaihan
resource research Public Programs
Making as a term has gained attention in the educational field. It signals many different meanings to many different groups, yet is not clearly defined. This project’s researchers refer to making as a term that bears social and cultural impact but with a broader more sociocultural association than definitions that center making in STEM learning. Using the theoretical lenses of critical relationality and embodiment, our research team position curriculum as a set of locally situated activities that are culturally, linguistically, socially, and politically influenced. We argue that curriculum
DATE:
TEAM MEMBERS: Veronica Oguilve Wen Wen Em Bowen Yousra Abourehab Amanda Bermudez Elizabeth Gaxiola Jill Castek
resource research Public Programs
Described by Wohlwend, Peppler, Keune and Thompson (2017) as “a range of activities that blend design and technology, including textile crafts, robotics, electronics, digital fabrication, mechanical repair or creation, tinkering with everyday appliances, digital storytelling, arts and crafts—in short, fabricating with new technologies to create almost anything” (p. 445), making can open new possibilities for applied, interdisciplinary learning in science, technology, engineering and mathematics (Martin, 2015), in ways that decenter and democratize access to ideas, and promote the construction
DATE:
TEAM MEMBERS: Jill Castek Michelle Schira Hagerman Rebecca Woodland
resource evaluation Public Programs
Techbridge Girls’ mission is to help girls discover a passion for science, engineering, and technology (SET). In August 2013, Techbridge Girls was awarded a five-year National Science Foundation grant to scale up its afterschool program from the San Francisco Bay Area to multiple new locations around the United States. Techbridge Girls began offering afterschool programming at elementary and middle schools in Greater Seattle in 2014, and in Washington, DC in 2015. Education Development Center is conducting the formative and summative evaluation of the project. To assess the implementation
DATE:
TEAM MEMBERS: Ginger Fitzhugh Carrie Liston Sarah Armstrong
resource evaluation Public Programs
Techbridge Girls’ mission is to help girls discover a passion for science, engineering, and technology (SET). In August 2013, Techbridge Girls was awarded a five-year National Science Foundation grant to scale up its afterschool program from the San Francisco Bay Area to multiple new locations around the United States. Techbridge Girls began offering afterschool programming at elementary and middle schools in Greater Seattle in 2014, and in Washington, DC in 2015. Education Development Center is conducting the formative and summative evaluation of the project. To assess the implementation
DATE:
TEAM MEMBERS: Ginger Fitzhugh Carrie Liston Sarah Armstrong
resource evaluation Public Programs
Techbridge Girls’ mission is to help girls discover a passion for science, engineering, and technology (SET). In August 2013, Techbridge Girls was awarded a five-year National Science Foundation grant to scale up its after-school program from the San Francisco Bay Area to multiple new locations around the United States. Techbridge Girls began offering after-school programming at elementary and middle schools in Greater Seattle in 2014, and in Washington, DC in 2015. Education Development Center is conducting the formative and summative evaluation of the project. To assess the
DATE:
TEAM MEMBERS: Ginger Fitzhugh Carrie Liston Sarah Armstrong
resource research Public Programs
How do afterschool programs view their local public libraries? Are they working with them, and in what ways? These are the questions that the Afterschool Alliance, along with its partners at the Space Science Institute’s National Center for Interactive Learning (NCIL) and the American Library Association, wanted to answer. Overall, our goal is to build bridges between the afterschool and library fields, so that both can share knowledge and resources to better serve our youth. While our work together has primarily focused on science, technology, engineering, and math (STEM) education through
DATE:
TEAM MEMBERS: Afterschool Alliance Paul Dusenbery Robert Jakubowski Anne Holland Laine Castle Keliann LaConte
resource project Public Programs
While the term 'failure' brings to mind negative associations, there is a current focus on failure as a driver of innovation and development in many professional fields. It is also emerging from prior research that for STEM professionals and educators, failure plays an important role in designing and making to increase learning, persistence and other noncognitive skills such as self-efficacy and independence. By investigating how youth and educators attend to moments of failure, how they interpret what this means, and how they respond, we will be better able to understand the dynamics of each part of the experience. The research team will be working with youth from urban, suburban and rural settings, students from Title I schools or who qualify for free/reduced-price lunches, those from racial and ethnic minority groups, as well as students who are learning English as a second language. These youth are from groups traditionally underrepresented in STEM and in making, and research indicates they are more likely to experience negative outcomes when they experience failure.

The intellectual merit of this project centers on establishing a baseline understanding of how failure in making is triggered and experienced by youth, what role educators play in the process, and what can be done to increase persistence and learning, rather than failure being an end-state. The research team will investigate these issues through the use of qualitative and quantitative research methods. In particular, the team will design and evaluate the effectiveness of interventions on increasing the abilities of youth and educators in noticing and responding to failures and increasing positive (e.g., resilience) outcomes. Research sites are selected because they will allow collection of data on youth from a wide range of backgrounds. The research team will also work to test and revise their hypothesized model of the influence of factors on persistence through failures in making. This project is a part of NSF's Maker Dear Colleague Letter (DCL) portfolio (NSF 15-086), a collaborative investment of Directorates for Computer & Information Science & Engineering (CISE), Education and Human Resources (EHR) and Engineering (ENG).
DATE: -
TEAM MEMBERS: Adam Maltese Amber Simpson Alice Anderson
resource research Public Programs
Young adulthood, typically defined as between the ages of 18 and 25, is a critical period of growth during which young people acquire the education and training that serve as the basis for their later occupations and income (Arnett, 2000). The successful transition from adolescence to early adulthood requires youth to have the skills and resources to graduate high school and then go to college or enter the workforce (Fuligni & Hardway, 2004; Lippman, Atienza, Rivers, & Keith, 2008). To accomplish these tasks in advanced urban societies, young adults need a wide range of social, cognitive
DATE:
TEAM MEMBERS: Julie O'Donnell Sandra Kirkner
resource project Media and Technology
The Cyberlearning and Future Learning Technologies Program funds efforts that will help in envisioning the next generation of learning technologies and advancing what we know about how people learn in technology-rich environments. Development and Implementation (DIP) Projects build on proof-of-concept work that showed the possibilities of the proposed new type of learning technology, and project teams build and refine a minimally-viable example of their proposed innovation that allows them to understand how such technology should be designed and used in the future and answer questions about how people learn with technology. Although for years researchers have believed technology could afford anytime-anywhere learning, we still don't understand how learners behave differently across contexts, such as home, school, and in the community, and how to get youth to identify as learners across those contexts. This proposal aims to use mobile devices and strategically placed shared kiosks to 'scientize' youth in two low-income communities. Through strategic partnerships with community organizations, educators, and families, the innovation is to get primary and middle-school students engaging in scientific inquiry in the context of their neighborhoods. Research will help determine how the technology can best be deployed, but also answer important questions about how communities can provide support to help kids think like scientists and identify with science. This project will design and implement ubiquitous technology tools that include mobile social media and tangible, community displays (collectively called ScienceKit) that are deeply embedded into two urban neighborhoods, and demonstrate how such ubiquitous technologies and related cyberlearning strategies are vital to improve information flow and coordination across a neighborhood ecosystem, in order to create environments where children can connect their science learning across contexts and time (e.g. scientizing). A program called ScienceEverywhere comprised of partnerships between tightly connected neighborhood organizations with mentors, teachers, parents, and researchers will help learners develop scientifically literate practices both in and out of school, and will demonstrate students' learning to their communities. Research will consist of mixed methods studies of use of the tools, including iterative design-based research, ethnography, and the use of participant observers from the community; these will be triangulated with usage logs of the technologies and content analysis of microblogs by the learners on their identities and interests. Discourse analysis of interviews with focal learners will orient the qualitative work on identity development, and analysis using activity theory will inform the influences of the social practices and sociotechnical systems on learner trajectories. Formative evaluation will help shed light on if and how the sociotechnical system promotes STEM literacy and STEM identity development.
DATE: -
TEAM MEMBERS: Tamara Clegg June Ahn Jason Yip
resource research Media and Technology
A youth media program called Youthscapes not only helps participants combat negative stereotypes of urban teens, but also gives them a sense of group solidarity that enables them to function as responsible media producers when they venture out into the community.
DATE:
TEAM MEMBERS: Linda Charmaraman
resource project Public Programs
The youth-based ITEST proposal, Invention, Design, Engineering and Art Cooperative (IDEA), will provide 100 students in grades 8-12 from the East Side of St. Paul, Minnesota with IT experiences in engineering and design. The content focus is mechanical and electrical engineering, such as product design, electronics, and robotics with an emphasis on 21st century job skills, including skills in advanced areas of microcontrollers, sensors, 3-D modeling software, and web software development for sharing iterative engineering product design ideas and maintaining progress on student product development. These technologies are practical and specific to careers in engineering and standards for technological literacy. During the three-year project period, a scaffolding process will be used to move students from exploratory activities in Design Teams in the 8th and 9th grades to paid employment experiences in grades 10-12 as part of Invention Crews. All design and product invention work will be directly connected to solving problems for local communities, including families and local businesses. For grades 8 and 9, students will receive 170 total contact hours per year and for grades 10-12, 280 contact hours per year. The participant target goal is 75% participation by girls, and African-American and Latino youth. Students participating in this project are situated within the country's most diverse urban districts with students speaking more than 103 languages and dialects. The schools targeted by this project average 84% of students receiving free or reduced price lunches, and have a population with 81% falling below proficiency in the Grade 8/11 Math MCA-II Test. To achieve the project goals of recruiting underrepresented students, and supporting academic transitions from middle and high school to college and university, the project team aggregated an impressive group of project partners that include schools, colleges, universities, and highly experienced youth and community groups, technology businesses that will provide mentoring of students and extensive involvement by parent and family services. Every partner committed to the project has a longstanding and abiding commitment to serving students from economically challenged areas.
DATE: -
TEAM MEMBERS: Anika Ward Kristen Murray Rachel Gates David Gundale