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Capturing the Computational Thinking of Families with Young Children in Out-of-School 

Environments 

Abstract 

For the past two decades, researchers and educators have been interested in integrating 

engineering into K-12 learning experiences. More recently, computational thinking (CT) has 

gained increased attention in K-12 engineering education. Computational thinking is broader 

than programming and coding. Some describe computational thinking as crucial to engineering 

problem solving and critical to engineering habits of mind like systems thinking. However, few 

studies have explored how computational thinking is exhibited by children, and CT 

competencies for children have not been consistently defined. Hence developing and 

implementing effective CT-related activities for children can be difficult. Therefore, exploring 

what computational thinking looks like for children is critical.  

Children can engage in, and learn to engage in computational thinking in both formal and 

informal settings. In this study, we are interested in exploring what computational thinking might 

look like in settings that approximate children’s everyday experiences. More specifically, in 

order to investigate what computational thinking looks like when enacted by young children, we 

are interested in observing children and their family members engaging in open-ended 

engineering activities that are play-based. To accomplish this, we observed and video-recorded 

5-8 year-old children and their families creating different structures together using large foam 

blocks that are out for free play at a science center. Based on our observations and analysis of the 

video-recordings, in this paper we report on the computational thinking practices and 

competencies children and families demonstrated while engaged in engineering play. Our 

findings can provide information needed to create a framework for promoting computational 

thinking in young children in informal settings.     

Introduction 

Computational thinking and engineering education  

Many believe that there are overlaps between engineering and computational thinking (NRC, 

2011; Wing 2006). From a curricular standpoint, undergraduate engineering students frequently 

learn programming and coding skills to use tools such as MATLAB in their work. Wing (2006) 

argues that computational thinking is more than just programming and coding, and is not 

thinking like computers. She believes computational thinking is the way that “humans, not 

computers, think (p.35)” which requires conceptualizing problems when solving them. She 

argues that computational thinking complements and combines engineering thinking and 

mathematical thinking (Wing, 2006).  According to her, computational thinking draws on 

engineering thinking to solve problems and design systems that interact with humans and the real 

world. Interacting with the real world requires thinking about design criteria and constraints – 

such as safety and efficacy. Like engineers, computational thinkers involve in a process of 

problem-solving (Computer Science Teacher Association & International Society for 

Technology in Education, 2011). 

Promoting problem solving and designing skills is a core focus of both undergraduate 

engineering education and pre-college engineering education. P-12 engineering education also 



has the potential to effectively impact student learning of different disciplines, increase 

technological literacy, and boost student interest towards engineering (National Academy of 

Engineering, 2009). In line with that, in 2009 the National Academy of Engineering (NAE 2009) 

released a document emphasizing three critical areas for pre-college engineering education: 

teaching engineering design, incorporating effective methods such as “computational methods” 

for developing different content knowledge skills, and promoting engineering habits of mind. 

Therefore, developing computational thinking is helpful in learning and strengthening pre-

college engineering.     

Additionally, due to the growth of engineering-related careers, many current K-12 students will 

end up working in fields that involve computing (Barr & Stephenson, 2011). At the same time, 

Barr and Stephenson also discuss that today’s children will live in a life which is heavily 

influenced by computing and requires computational thinking. Therefore, today’s children 

should develop computational thinking competences, learn to solve problems computationally 

and work with computational methods and tools early on. However, embedding computational 

thinking in pre-college education requires practical approaches based on operational definitions 

(Barr & Stephenson, 2011) suitable for the age of children. In order to develop suitable 

computational thinking definitions and take practical approaches, characterizing what 

computational thinking looks like in children is necessary.    

Computational thinking in out-of-school environments 

Families can play an important role in children’s learning experiences, because children spend 

most of their time in out-of-school environments (Stevens & Bransford, 2007). These 

environments include everyday settings like family activities or in designed spaces like museums 

and science centers.  Children are engaged in different activities with their families that may 

provide them a wealth of learning opportunities. Through these learning opportunities, children 

deeply engage in learning while interacting with family members (and others), build on their 

prior knowledge and interest, develop stronger thinking, and finally reflect on their learning 

experiences through sensemaking conversations with their families  (Bell, Lewenstein, Shouse, 

& Feder, 2009). Therefore, family interactions can support children in learning and developing 

their thinking, skills and competencies.    

While little research has studied learning engineering in out-of-school environments, some 

evidence from the literature has shown that engineering interest, engineering knowledge and 

engineering abilities may increase in these environments (Paulsen et al. 2015; Dorie et al. 2014; 

Kotys-Schwartz, Besterfield-Sacre, & Shuman, 2011). As previously mentioned, computational 

thinking has a strong connection with engineering and engineering thinking. Hence we believe 

we may be able to see development of computational thinking in Out-of-School environments.  

Purpose of the Study 

This study is part of an NSF-funded project (Hynes et al. 2016). One aspect of this project looks 

at K-2 students’ computational thinking competencies in integrated STEM informal experiences. 

In earlier phases of the project, we conducted research to develop a set of definitions of CT 

competencies that can be observed when enacted by children (Dasgupta, Rynearson, Purzer, 



Ehsan, & Cardella, 2017; INSPIRE Definitions, 2017). For this study, we are focusing on seven 

of these competencies: Abstraction, Algorithms and Procedures, Debugging, Problem 

Decomposition, Parallelization, Pattern Recognition and Simulation. These competencies were 

then synthesized into three phases of an iterative computational thinking process consisting of 

(1) Problem Scoping, (2) Development, and (3) Implementing and Improving. Each of the phases 

involves multiple CT competencies as noted below:  

Problem Scoping: 

- Problem Decomposition 

- Abstraction 

- Pattern Recognition 

Development: 

- Algorithms & Procedures 

- Parallelization 

- Abstraction 

- Pattern Recognition 

Implementing & Improving: 

- Troubleshooting/Debugging 

- Problem Decomposition 

- Simulation, Automation, Evaluation 

- Pattern Recognition 

For this study, our purpose was to investigate which CT competencies can be observed when 

children and their families are engaged in an engineering design task at a science center.  

Methods  

Study Procedure  

The study was conducted at a science center in the Midwest. Families with K-2–aged children 

who visited the science center were invited to participate in the study. They were given an 

engineering design task, and were asked to build their solution using big foam blocks (see Table 

1).  The task (see Figure 1) was presented them on signs that served as a proxy for exhibit 

signage.   

We also provided the adults (i.e. parents and other family members) with information about 

computational thinking by hanging signage at multiple locations in the big foam block exhibit 

space. The families were given 30 minutes to read the task, discuss it with their children, and 

develop their solutions. At the end, we interviewed both adults and children about their 

experiences during this task, and previous experiences that they considered to be similar to the 

activity.    

 



Table 1. Pictures of Playgroud created by Families.  

Playground 1 Playground 2 Playground 3 

   

 

Data Sources  

To date, five families have participated in this study. In this paper, we focus on three cases to 

begin to map out the space of skills and competencies that children and families can engage in, 

without making claims about how common it is for children or families to engage in these 

competencies. For this study, data sources include video recordings and field notes collected 

while the families engaged in the activity, audio-recordings of the interviews with the adults and 

children and transcripts of the video and audio recordings. .  

Data Analysis 

To analyze the data, we created a codebook. The codebook was organized based on the three 

phases of Problem Scoping, Development, and Implementing and Improving.  The codebook 

included the definitions of CT competencies as well as the abbreviation for each competency as a 

code. In order to analyze the video data, we followed the analytical model suggested by Powell, 

Francisco, and Maher (2003). The model consists of seven non-linear phases:      

1. Viewing attentively the video data 

2. Describing the video data 

3. Identifying critical events 

4. Transcribing 

5. Coding 

6. Constructing a storyline 

7. Composing a narrative. 

 



Figure 1: The text of the design challenge that was presented to the families. 

 

 

 

 



Findings 

Analyzing our video data provides us with insights of computational thinking competencies that 

may be observed when families of 5-8 year-old children engage in an engineering design 

activity. In this section, we first provide general examples of what we have seen occurring 

among all three families. Then a narrative of one family is included to provide a more complete 

description of what computational thinking can look like in a series of family interactions.  

General Examples 

The table below is organized as three phases of a computational thinking approach to problem 

solving mentioned above. The CT competencies associated with each phase, their definitions and 

examples are presented in Table 2. Table 2 consists of pictures of the structures that the families 

created. From the table, we see that the three families engaged in activities that mapped to all 

seven computational thinking competencies.  

Table 1. CT Problem solving phases 

Problem Scoping 

CT Competency  Definition  General Example(s) 

Problem 

Decomposition  
 

Breaking down data, 

processes or problems into 

smaller and more 

manageable components to 

solve a problem.  

Identifying the sub-components of 

the task by asking questions like: 

Where to build? How? What to do? 

Who should do what?  What we 

need?  

 

Pattern Recognition  Observing patterns, trends 

and regularities in data. 

Asking questions about/talking 

about what the playground might 

include based on real life examples 

of playgrounds.  

Abstraction Identify and utilize the 

structure of concepts/main 

ideas. 

Talking about the main parts of the 

playgrounds by considering 

similarities across real-life examples 

(e.g. all playgrounds have fences 

and something to play with).   

Development 

CT Competency  Definition  General Example(s) 

Algorithms and 

procedures    

Following, identifying, 

using, and creating an 

ordered set of instructions. 

(ie, through selection, 

iteration and recursion) 

Selecting appropriate blocks in 

order to build parts of the 

playground.  

Building the structure block by 

block using adult’s directions.  

Pattern Recognition Observing patterns, trends 

and regularities in data. 

Selecting blocks and putting them 

together based on their experiences 

of what has and has not worked 

well.  

Abstraction  Identify and utilize the Identifying the main characteristics 



structure of concepts/main 

ideas. 

of parts of the playground and 

selecting blocks to build something 

similar (e.g. using a circular block 

as a wheel toy).  

Parallelization  Simultaneously processing 

smaller tasks to more 

efficiently reach a goal. 

Dividing the work of building two 

parts of the playground 

simultaneously (e.g. one builds the 

window on one wall, the other 

builds the next wall).   

Implementing and Improving 

CT Competency  Definition  General Example(s) 

Debugging    Identifying and addressing 

problems that inhibit 

progress toward task 

completion 

Noticing a problem in the structure 

and trying to solve it (e.g. re-

structuring the wall so that the dog 

may jump over it)  

Pattern Recognition  Observing patterns, trends 

and regularities in data. 

Finding the cause of the problem 

and solving it using what they have 

experienced before while playing.  

Problem 

Decomposition  

Breaking down data, 

processes or problems into 

smaller and more 

manageable components to 

solve a problem. 

Breaking down the problem and its 

causes in order to solve the problem.  

Simulation  Developing a model or a 

representation to imitate 

natural and artificial 

processes. 

Playing with/trying out the 

playground they made to imitate 

how a pet might use the playground.   

 

Computational Thinking Enacted by One Family 

In Table 3, we present a narrative of the experience of one family as they worked on the activity. 

The narrative allows us to see when the different computational thinking competencies were 

enacted, the sequence of the family’s process, and a concretized version of computational 

thinking during a family design activity.  The family consisted of a mother and her children John 

(7-years old) and Daniel (4-years old).  

Table 2. Examples of Families Engaging in CT. 

Narrative Computational Thinking  

The mother begins by reading the task 

statement aloud to her children and describing 

the criteria to her children. She then starts the 

conversation below:  

Mother: so, what is your plan John? 

John: I’m gonna build a fence and then toys.  

Mother: what the fence is gonna look like? 

The family begin to break down the problem 

in a way that helps them define the scope of 

the problem better. In particular, John 

identifies the fence and the toys as the two 

major components of the task (Problem 

Scoping-Problem Decomposition). In 

addition, we see that John is able to imagine 



John ; A large rectangle or may be a circle. 

Maybe, I can use this [pointing to a circular 

block on the top).   

Mother: Okay where is gonna be? 

John : Over there. 

Mother:It is gonna be like this? Well, where 

we are going to start?  

John: Right here. 

 

the playground in a yard and focus on features 

that are common for playgrounds (Problem 

Scoping-Pattern Recognition & 

Abstraction). He then focuses on important 

details of the fence and then based on the 

fences he might have seen in the real life, he 

realizes that the fence should have a 

rectangular or circular shape (Development- 

Pattern Recognition & Abstraction).  

Then, the children look for some blocks that 

they might need by pointing out to and/or 

bringing the blocks. When John confirms the 

selection of the blocks, the mother asks the 

children where they want to place the base of 

the fence. Then, John tells the mother and 

Daniel where to place the rest of the blocks.  

Children build the fence by the ordered set of 

instruction that John provides. The ordered set 

of instruction applies to selecting the blocks 

and then building the fence. This is an 

example of Development- Algorithm.    

 

John builds the fence, using the same 

rectangular blocks on top of each other. He 

uses a cylindrical block as the connector, and 

connect the blocks. Then, he uses the 

connectors for other parts as well. 

John identifies a pattern of the connector 

holding the blocks together, so he continues 

using them for building the fence. This is an 

example of Development-Pattern 

Recognition. 

 

During building the structure, the mother 

suggest to build a door or a gate in a corner of 

the fence, but John responses that they can 

also build a wall.  

 

Both John and his mother makes connection 

to the yards in real life by mentioning its 

possible components like gate, fence or a 

wall. This is an example of Problem 

Scoping- Abstraction.  

In the process of making the fence, Daniel 

puts several blocks on the top of each which 

make that fence taller than others. John 

disagrees and tells his sibling that “it should 

be the same size. Look at this. You should 

take one, and then another one.” 

The child knows that based on criteria, they 

should create a pattern, and building one of 

the fence taller than others does not make a 

pattern (Implementing and Improving-

Pattern Recognition).  Then, he intends to 

solve this problem (debugging) by taking out 

two blocks. 

John builds stairs using few small rectangular 

blocks. 

Mother: what is this for? 

John: umm, I don’t know, but it is stairs.  

Mother: is it a toy or something that the 

puppy can play with?  

John: I don’t know. It is just stairs.  

The mother tries to convince him that the 

stars would not work, because the puppy can 

jump over it and get out of the fence. Daniel 

acts out like a puppy and jump on the stairs 

and then over the fence. 

The child builds a structure and calls it stairs 

because he know stairs look like that. This is 

an example of Development-Abstraction, 

and Implementing and Improving-

simulation. The mother tries to encourage 

them to do Implementing and Improving -

Debugging by showing the problem, and the 

second child Implementing and Improving-

Simulate how the problem would look like. 



Towards the end, the mother suggests to build 

a gate or a door. She describes the door as “it 

opens and we can let him [the puppy] in.” 

Daniel nods and gets two blocks which look 

like hinges and a connector, and builds the 

gate. 

He was able to identify the concept of a door 

being open and closed, focus on the important 

information of the concept, and utilize that 

information in his structure by creating 

something a hinge. This is an example of 

Development-Abstraction. 

 

Discussion 

The examples we have seen in our data suggest that children are capable of engaging in 

computational thinking when they working on engineering tasks with their families. The process 

of computational thinking they demonstrated is iterative not linear. We have seen examples of all 

seven of the competencies we focused on in the data we collected. Below, we provide further 

discussion of pattern recognition, abstraction, and debugging. We now focus on these three 

competencies because pattern recognition, abstraction, and debugging were repeated in more 

than one phases. Problem decomposition occurred quite the same in both phases of problem 

scoping and improving and implementing. Both abstraction and pattern recognition were seen 

slightly differently in different phases.  

In our study, Pattern recognition happened in two different ways. In the problem scoping 

phase, it was embedded into abstraction. This will be discussed in the next paragraph. Pattern 

recognition in both development and implementing and improving phases occurred when 

children used their experiences of failure and success in working with blocks to develop or 

improve the structure. They recognized which blocks went on top of each other better and were 

stable and look the way they want to.    

In our dataset, Abstraction happened in both problem scoping and development phases. 

Abstraction in both phases can be observed through pattern recognition, but in different levels. 

This is consistence with Bennett and Müllar’s interpretations of abstraction (Bennett & Müller, 

2010). They argue that through abstraction, children are first able to identify features based on 

the overall appearance of similar items like the patterns they see in similar objects. An example 

for the task of this study would be that based on what children saw in most of the real-life 

playgrounds (patterns), they realized they should include a fence/wall and gates around the 

playground and toys or play equipment in the middle. Planning to build a similar playground was 

abstraction. Then, they recognized independent features of an object and later they considered 

more features of the objects. This is what happened in the development phase. In the 

development phase, children focused on the main details of the part they decide to build (e.g. a 

gate). They recognized the main details from the similarities they see of that part in the real-life 

examples (patterns). Then based on those details, they selected and used the blocks to build a 

structure very similar to the real-life one.  

We also noticed that in all the examples seen in the implementing and improving phase, pattern 

recognition, problem decomposition and simulation were all a sub-set of debugging. Through 

debugging, children noticed the cause of the problem in their structure, and then they enacted the 

three other computational thinking competencies to solve the problem.  



Conclusion 

Our findings provide evidence that 5-8 year-old children are capable of enacting computational 

thinking competencies when interacting with an adult in solving engineering tasks. All seven of 

the CT competencies of abstraction, algorithms and procedures, debugging, problem 

decomposition, parallelization, pattern recognition and simulation were observed happening in 

this study. We expect that the findings are not limited to this task and study, and can be seen 

occurring in other engineering design tasks. Because we were able to capture examples of 

computational thinking in our study, we believe that further studies of computational thinking 

amongst 5-8 year-old children is a productive direction for future research as well as a 

productive direction for interventions aimed at promoting CT competencies in children. In 

addition, further research on how parents’ and other adults’ interactions with children promotes 

computational thinking in children should be conducted.  
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