

Summary

Education researchers and practitioners are increasingly recognizing the need for learning in informal settings to complement formal science learning (Bybee, 2001; Falk, 2001). Informal science education may be critical in meeting the goals of reform and in keeping students and the public informed of advances in science. As such, greater attention has been given to learning in informal science education settings.

A growing body of research in informal learning environments examines how groups engage in learning conversations to make meaning from content and exhibits in these settings. The National Research Council (2009) speculated that individual and group identity might be shaped and reinforced during such learning conversations.

The purpose of this study was to gain insight into the ways identity as a learner of science was constructed during learning conversations at a science camp. Findings from this study suggest implications for the professional development of informal science educators.

Central Research Question

The central research question that guided the study was:

What is the role of conversation in influencing science learner identity development during an informal science education camp?

Informal Science Education: Science Camps

Characteristics of Informal Science Education

Occur outside the school setting

Not developed for school use

Not developed as part of a school curriculum

Voluntary

Non-assessed

Non-competitive

Driven by the needs and interests of the learner

Typical Characteristics of Science Camps

Community-based

Short-term, science intensive programs Residential or day-camps

Held in novel locations

Offered during winter and summer breaks Focus on persisting in science or pursuing

science careers Provide access to resources

Gains in confidence, attitudes, and interest in science

Learning Conversations

The conversations that participants engage in during social interactions in informal learning environments are referred to as learning conversations (Allen, 2002; Crowley, Callanan, Jipson, Galco, Topping & Shrager, 2001). Through the discourse that surfaces as a result of these meaning making conversations, participants may have opportunities to engage in identity development (National Research Council, 2009).

The Marine Science Consortium Informal Science Education Program Wallops Island, VA

College Park, MD

Students' construction of identity as a learner of science during learning conversations: Implications for the professional development of educators in informal science education Kelly Riedinger, Ph.D.

University of North Carolina Wilmington

S

Theoretical Framework

Identity theory

Identity is about becoming and being recognized as a certain type of person (Gee, 2001; 2011). Identity is considered dynamic, socially constructed, context dependent and an ongoing process of negotiation (Olitsky, 2007; Roth & Tobin, 2007; Varelas et al., 2007). Gee (2005; 2011) argued that we use language to enact identity at the right time and in the right context to get recognized as a certain type of person.

Nasir (2002) argued that learning is about becoming as well as knowing and that how the learning setting affords ways of becoming is central to understanding learning. Varelas et al. (2007) stated that seeing oneself as a capable learner is an

important component of one's identity as a learner of science. An identity as a capable learner can influence the practices an individual engages in as well as the trajectories available to the learners within these practice (Nasir, 2002).

Wenger's (1998) identity theory postulated that members belong to multiple communities. He contended that the process of brokering helps to

connect the boundaries of these various communities. In terms of learning science, the various communities to which the learner belongs must be connected for the individual to imagine a trajectory of full membership

in the community of science learners. Brokers and boundary

objects help to negotiate the brokering process. In the context of the informal science education camp, I theorized that the informal educators and tools of science could serve as brokers and boundary objects that would guide learners in viewing themselves in the community of practice of a learner of science.

Study Design and Methodology

Qualitative Case Study

Creswell (2003) identified case studies as a method in which, "the researcher explores in depth a program, an event, an activity, a process or one or more individuals" (p. 15).

Case Description

Marine Science Consortium (Wallops Island, VA)

Coastal Ecology Field Trip Program

Coastal Ecology Program activities: science lectures, hands-on activities, research cruises, field-based experiences, & laboratory exercises

Sample Science Camp Activities

Science Camp Activity		Description	100			
		Current cross	-	Identity Development	Description	
Research Cruise	Physical Oceanography Observations	 Secchi disk Forel Ule Color Chart pH 		Affective Dimensions of Identity	 Greater interest, enthusiasm, and motivation Hands-on, experience-based activities The opportunity to work with their peers in groups 	
	Water Quality Testing	Dissolved Oxygen		Alignment	 Participants began to align their practices and discourses. 	
Organism Lab	Macro-organism lab	 Salinity Taxonomy Organism identification 		Views of Science	 Definitions of science Need for science Science in everyday lives 	
Intertidal Field	Biological Sampling	 Dichotomous keys Organism collection Sieving 		Confidence in Science	 Positively influenced confidence More comfortable setting Redefined success in science 	
Experience	Diological Camping	 Seining 		Career	 Maintained or developed an interest in pursuing a science 	
Marsh Field Experience	Data Collection	 Water quality testing Organism collection Zones of the marsh 		Considerations	 career Science career in action Expanded participants' understanding of science careers 	

udy Participants					
ase Participant	School	Gender	Ethnicity/Race	Grade	
annah	Patriot MS	F	White	8	
ynn	Patriot MS	F	White	8	
ale	Patriot MS	М	White	8	
eleste	Thomas Jefferson MS	F	African Am.	7	
rdan	Thomas Jefferson MS	Μ	White	7	
nma	Thomas Jefferson MS	F	White	7	

*Pseudonyms used for student participants and schools for anonymity purposes.

Corpus of Data and Analysis Methods

Event/Participants	Data Collection Method	Analysis
Observations of Science Activities	Videotape	Discourse Analysis
	Researcher Field Notes	
Student Focus Group Interview	Audiotape	Transcription for verbal and nonverbal interactions
	Videotape	Discourse Analysis
Classroom Teacher Interviews	Audiotape	Transcription for verbal interactions
		Discourse Analysis
Student Reflective Journals	Student responses to journal prompts	Used to construct narratives, or thick-

Theoretical Model

Identity Development

Suppo Envir

Focus Affect Dimen of Lea Acces Sciene Tools Novel

Authe Sciend

Langu Sense making practic Positio

Alignn

descriptions of case

participants

Engage

Power Dynam Seeing Others New W

The data collected from this study can provide insight for teacher education in informal science environments and guidance for professional development opportunities for informal science educators. A finding from the study was the role informal science educators at the MSC played in facilitating learning conversations and the construction of identity for learners. This study suggests that fostering learning conversations and identity development for visitors and participants of informal science education programs is a fruitful area for professional development of informal science educators.

Influential Features of ISE

ſe	Definition	Example
ortive onment	 Lack of grading pressures, competition, rules and procedures Learners able to try on new identities 	 -Hannah was able to work equitably with a teacher to identify a seaweed species during the organism lab. -Dale felt more relaxed in the science camp setting because he felt less pressure.
on ive isions irning	 Focus on feelings, emotion, interest, enthusiasm and motivation 	-The science camp activities were fun and developed participants' interest in science
s to ce	 The tools and equipment used by professional scientists for investigations 	 Participants had access to tools on the research cruise
ty	 Learning experiences that are new and unique to learners. 	Hannah suggested that the dunes field experience to Wallops Island was a novel and unique experience, one in which she may never have another opportunity for in her life
ntic ce	 Learning activities that mirror the practices and contexts of practicing scientists 	 Participants collected authentic science data on the research cruise. Participants learning science in the field

The Role of Learning Conversations

age	Definition	Example
J :es	 Making meaning of science content through social interactions with others. 	Emma used everyday language to make sense of terms during the organism lab.
oning	 Individuals put themselves in categories relative to other in relation to cultural and social norms and practices. 	Dale used language to position himself in the category of a person that was good at science.
nent	 Coordinating one's energy and activities to fit within a community of practice. 	Gretchen, Addison and Everett began to appropriate scientific discourse.
ement	 Active involvement in the process of negotiation of meaning. Direct experience of the world. 	Jordan believed he was more engaged during the hands-on, fields- based activities at the science camp.
nics	 The ways that individuals exert power and control over one another. 	Hannah felt less pressure and less under the watch of the teacher.
in /ays	 Learning more about members of a community and developing new relationships and views of others. 	Emma and Jordan believed that others would learn more about them.

Implications for Teacher Education

Recommendations for PD of Informal Science Educators

which students can construct identities as learners of science

conversations between

science and prompt meaning making