Visitor Studies 101: Evaluating Impact and Understanding Audiences

Ellen Giusti, Independent Consultant
egiusti@nyc.rr.com
Visitor Studies

Visitor studies are social science inquiries that use empirical or other **systematic** methods to collect, analyze, and interpret information about visitors to either

- 1) add to general information and theory (**research**) or
- 2) to inform decisions in specific situations (**evaluation**).
Museum Visitor Studies

- **Basic Research**
 - Generates and Tests Theories
 - Learning styles
 - Social interactions
 - Gender differences
 - Effect on community
 - Cultural differences
 - Emotive responses
 - Learning

- **Evaluation**
 - Determines Successes and Shortcomings
 - Visitor experiences
 - Visitor understanding
 - Exhibition layout
 - Interpretive method
 - Design of components
 - Effect on community
 - Learning

- **Market Research**
 - Identifies Market Segments
 - Demographics
 - Psychographics
 - Target audience
 - Community attitude
 - Non-visitors
 - Satisfaction

Graphic from Randi Korn
Basic Phases of Evaluation

Front-end: used at earliest planning stage to find out what potential audience knows about your subject and their interest level

Formative: during development phase to test ideas and prototypes with target audience

Remedial: before opening, to fix weaknesses

Summative: after opening, impact on visitors
Evaluation for Program & Exhibition Development

Development Phase

<table>
<thead>
<tr>
<th>Audience Input</th>
<th>Professional Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Planning</td>
<td></td>
</tr>
<tr>
<td>Front-end Evaluation ⇒</td>
<td>Content Development ⇐</td>
</tr>
<tr>
<td>Formative Evaluation ⇒</td>
<td>Design and Development ⇐</td>
</tr>
<tr>
<td>Remedial Evaluation ⇒</td>
<td>Trouble shooting ⇐</td>
</tr>
<tr>
<td>Summative Evaluation ⇒</td>
<td>Critical Appraisal ⇐</td>
</tr>
<tr>
<td>2. Preparation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design and Development ⇐</td>
</tr>
<tr>
<td></td>
<td>Trouble shooting ⇐</td>
</tr>
<tr>
<td>3. Post-Installation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Critical Appraisal ⇐</td>
</tr>
</tbody>
</table>

- **1. Planning**:
 - Revisions
 - Goals and Objectives

- **2. Preparation**:
 - Revisions
 - Final Design

- **3. Post-Installation**:
 - Revisions
 - Responsible Program

Graphic from Randi Korn
Front-end or background study

• What does the audience bring
 – Prior knowledge to build on
 – Misconceptions to address

• Methods
 – Qualitative: group or individual depth interviews
 – Quantitative: survey, questionnaire

• Guides development of project goals and objectives
 – What you will do
 – For whom
 – Proposed impacts
ISE Audiences tend to be...

• Well educated generalists
• In a study at AMNH
 – 5% felt very well informed about new scientific discoveries
 – 55% feel moderately well informed
 – 40% feel poorly informed about new scientific discoveries
Dinosaurs Exhibition

• How interested are visitors really?
• Do they know about recent research?
 – In fossil analysis
 – In laboratory technologies
• What do teachers need to help them meet science curriculum standards?
Formative evaluation

• Most important, least formal methodology
 – Can be systematic or “quick and dirty”

• Test your assumptions: explanatory text (exhibit labels), learning technology, graphics
 – What do users think it means?
 – Do they know what to do?
 – Does it match what you intended?
 – If not, there’s still time to change it!
Remedial evaluation

• After the program is finished, tweak & improve

• Remedial evaluation requires:
 – Money set aside for evaluation and potential retrofitting
 – Ability to admit to making mistakes
Summative Evaluation: Impact

• Once the exhibition or program is up and running: has it accomplished its goals?
• What is the impact on the target audience?
• May be required by funding organizations
“Evaluation” can be threatening

- It doesn’t mean you are *judging* or being judged (is program good or bad?)
- It *does* mean you are thinking about your program’s impact on the audience/user during all phases of program development
- Front-end, formative and remedial evaluation means summative will bring few surprises
- Thinking evaluatively leads to better programs
In-House vs. External Evaluator

• In-house advantage
 – Familiar with culture of team or organization
 – Familiar with project subject

• External advantage
 – Objectivity
 – Independence from producers
 – Required by federal agencies (e.g., NSF)
Outcomes-Based Planning & Evaluation

• A systematic way to plan a program and to measure if it has achieved its goals.

• STEM impacts to measure*:
 – Awareness, knowledge, understanding
 – Engagement or interest
 – Attitude
 – Behavior
 – Skills
 – Other

* “Framework for Evaluating Impacts of Informal Science Education Projects”
Logic Model

A planning and evaluation tool that helps:

– Identify specific individuals or groups (target audience) with a defined need

– Decide on clear program benefits (outcomes) to meet that need

– Design program services to reach that audience and achieve the desired outcomes

– Develop ways to measure those program benefits (indicators)
Logic Model

- Visual representation of project rationale
- A roadmap for assessing program implementation and impact
 - Inputs
 - Activities
 - Outputs
 - Outcomes
 - Strategic impact
Example of Project Logic Model: *How Science and Engineering Drive Hybrid Vehicles*

Inputs
- NSF
- Grant recipient
- Collaborators and consultants
- Other stakeholders

Activities
- Use of podcasts in a 5-month museum exhibit entitled *How Science and Engineering Drive Hybrid Vehicles*
- Professional development seminars on how to integrate podcasts into a science museum exhibit

Outputs
- Number of visitors to museum exhibit on hybrid engines
- Number of treatment group visitors who report accessing the podcast
- Number of participants in professional development seminars

Outcomes
- Visitors will demonstrate increased knowledge about hybrid engines
- Visitors will seek out additional information about hybrid vehicles
- Visitors will share information about hybrid technology with others
- Visitors will investigate the feasibility of purchasing a car that relies on hybrid technology
- Participants will be able to describe the benefits of using podcasts to enhance the experiences of museum visitors
- Participants will incorporate podcasts into their own museum exhibits

Strategic impacts
- The project will document the benefits and practical issues of using podcasts to impart information
- The project will increase the number of museum exhibits nationwide that make use of podcasts
Experimental Methodology

- Randomized Control Trials (RCT)
- Randomized post-only design
- Using comparisons
- When comparison not possible:
 - Exhibit’s main idea
 - Connection between TV program and self
 - Professionals remembering an experience
 - Self-reporting new knowledge
Naturalistic Methodology

• In-depth interviews
• Focus groups
• Tracking and timing
• “Think out loud”
• Concept maps
Methods

• Quantitative
 – Surveys, questionnaires, tracking and timing
• Qualitative
 – Group or individual in-depth interviews
• Mixed method design
• Systematic samples, verifiable data
ISE Audiences Are Diverse

• Impact reports should be inclusive
 – Demographics (age, disability, language)
 – Prior knowledge and interests
 – Experiences may not be linear, predictable

• Sampling
 – Random (representing potential audience)
 – Purposive (targeting segments of public)

• Report negative findings (no impact)
Ethical Treatment of Respondents

• Purpose of study
 – How data will be used & by whom

• Anonymity & confidentiality
 – Permission to interview kids
 – Written release for photos & video

• Institutional Review Boards (IRB)
Data Analysis and Report Writing

• Statistical and database applications
• Content analysis of qualitative data
• Best if evaluator is part planning process
• Evaluation is one piece of your report to funder