Evaluation 101

Everything You Need to Know to Get Started Evaluating Informal Science Education Media

Saul Rockman and Jennifer Borse - Rockman et al

This presentation is largely

based on:

And our website:

Framework for Evaluating Impacts of Informal Science Education Projects

Report from a National Science Foundation Workshop

The National Science Foundation

The Directorate for Education and Human Resources

The Division of Research on Learning in Formal and Informal Settings (DRL)

http://evaluationspringboard.org/science

Evaluation Springboard

Getting

Starte

http://www

Partners . Site Map

the Edventure group

Evaluation Springboard responds to the need for knowledge and skills in evaluation for those who want to undertake or commission evaluations of informal science education projects.

While evaluation is about "determining the worth" of something, it is important to think about how evaluation happens in real life. Often it involves decisions that have to be made under pressure of time, or in circumstances where the project is so new that the evaluation needs to gather information that can be used directly to influence the implementation of the intervention.

We hope that this website provides a springboard for launching your own evaluation efforts and for developing a basic understanding of the why and how of evaluation. It's the key to determining the effectiveness of informal science projects.

Copyright 2006 ROCKMAN ETAL and the EdVenture Group Revised Copyright 2008 ROCKMAN ETAL

ROCKMAN ET AL

The development of Evaluation Springboard was supported by the U.S. Department of Education Office of Elementary and Secondary Education (Grant No. 53184030015; West Virginia Department of Education Contract No. EDD204451), any optimions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the U.S. Department of Education or the West Virginia Department of Education.

What you used to think was a necessary evíl.... still is!

What is an evaluation? Ensure that your product/program ís Formative Evaluation successful...and... Summative Prove that it is Evaluation successful!

"Evaluation is not just for preparing good proposals, It is also an integral part of running good projects."

Lynn Dierking, in "Framework for Evaluating Impacts of Informal Science Education Projects" (2008)

Formative Evaluation

Focused on <u>development</u> and <u>improvement</u> of a project

- Are components of the project being carried out as intended? If not, what has changed and why?
- Is the project moving according to the projected timeline?
- What is working well? What are the challenges?
- Is the budget on track?
- What needs to be done to ensure progress according to plan?

	Summative Evaluation
	Measures the outcomes and impacts of a project:
•	Were the project's goals met?
•	What components of the project were most effective?
	What specific impacts did the project have on intended audiences (as well as secondary audiences)?

Summative Evaluation:

Informal Education and Outreach Framework

Impact Category	Public Audiences	Professional Audiences
Awareness, knowledge or understanding (of)	STEM concepts, processes, or careers	Informal STEM education/ outreach research or practice.
Engagement or interest (in)	STEM concepts, processes, or careers	Advancing informal STEM education/outreach field
Attitude (towards)	STEM-related topic or capabilities	Informal STEM education/ outreach research or practice
Behavior (related to)	STEM concepts, processes, or careers	Informal STEM education/ outreach research or practice
Skills (based on)	STEM concepts, processes, or careers	Informal STEM education/ outreach research or practice
Other	Project specific	Project specific

Source: Friedman, A. (Ed) (March 12, 2008) Framework for Evaluating Impacts of Informal Science Education Projects [On-line] (p. 11). Available at http://insci.org/resources/Eval_Framework.pdf

Three Big Questions: 1. Are you doing what you said you were going to do? 2. How well is it (the project, program, or initiative) going? 3. Does what you are doing have an

See NSF Framework **Chapter 3** For more info about "impact."

С	Chapter 1: Intro to Evaluation	
	Now you're ready t	ostart!

- Set the stage
- Gather background information
- Develop a Logic Model

And don't forget your Stakeholders!

Logic Model for the ISE Program

	INPUTS	ACTIVITIES	OUTPUTS		OUTCOMES	STRATEGIC IMPACTS
	NSF	Activities that Target Public Audiences Mass Media Exhibits	Number of viewers Number of visitors		Awareness, knowledge or understanding of STEM concepts, processes or careers	
Intended audience and	Grant recipient	Learning Technologies Youth/Community Programs	Number of participants		Engagement or Interest in STEM concepts, processes or careers	New knowledge practices that advance the
strategic impact	Collaborators	Activities that Target Professional Audiences	Number of		Attitude towards STEM-related topics	informal education field
	and consultants	Seminars/ Conferences Professional Development	Attendees Number of members		Behavior resulting From engagement	
	Other stakeholders	Materials/ Publications	Number of users	 -→	New skills based on engagement	

Step 2:Design Plan

Framing questions

Identify key questions that will guide the evaluation -What do you want to know (Remember the 3 Big ?'s) Consider: Audience, Resources, and Time

Organizing tools

Constructs: concepts that can be measured

Indicators: examples of success that can be measured

Question/Method Matrix

			DATA SOURCES										
	RESEARCH QUESTIONS	CONSTRUCTS	Interviews with Program Staff	Classroom Observation	Focus Groups with Students	Program Evaluations**	Rubric Ratings of Skill** (i.e., Session Evaluations)	Artifacts (i.e. class work)**	Peer Mentor Rating Scale	Interviews with Peer Mentors	STP Assessment	Participant Surveys	
Formative assessment	Are the program components and activities of the Science and Technology Program (STP) being implemented as planned?	Integrity of implementation, supports, barriers, intended vs. enacted curriculum	~	~	~	~							
Summative assessment	What is the impact of participating in the STP Digital Technology Institute on participant media and technology engineering craft skills and competence?	21 st Century Skills as applied to production and media literacy					~	~	~		~		
	What is the impact of STP Science Desk on the development of participant journalistic skills, deepened understanding of science issues, and broader community awareness?	Media literacy, science content knowledge, social responsibility/community awareness, science-in- society knowledge					-	~	~		~		
	What is the impact of the STP peer-mentoring program on the development of mentoring skills and responsibility of peer mentors?	Pedagogical content knowledge, interpersonal skills, empathy				~			~	~			
	What is the impact of the STP program on the interest and engagement of participants in STEM activities, courses-of- study, and careers?	Attitudes toward science and technology, awareness of and interest in science careers										~	
	What is the impact of all of the aforementioned features (i.e., skills, knowledge, mentoring and interest) over time? For instance, are there different levels of interest that emerge among students and different tracks that they take? What does attention to STEM issues look like over the course of the program?	Change over time, behaviors related to exposure to science (e.g., course of study choices, career interests, attention to science in the news, etc.)					~	-	-	~	~	~	

Alignment of Research Questions, Constructs, and Data Sources for a Youth Media Program (NSF)

** Existing instrument in use by the youth media program

Step 3:Select Methods

Quantitative

- Surveys or questionnaires
- Objective tests of comprehension
- Gate counts, television ratings, website hits
- Time spent in exhibits
- Number of posts to a website or comments/questions

Qualitative

- In-depth interviews
- Focus Groups
- Observations
- Analysis of authentic data, user/visitor created products

 Get a more in-depth understanding

• Analyze a large quantity of dat

Findings are more generalizable

 Helps with interpretation o quantitative data

Chapter 2: Doing an Evaluation Tips Think about what you want to know and be able to say at the end of your evaluation.

• Television ratings or evaluation efforts

Step 4:Collect Data

<u>Assessments</u>

Get your #2 pencils ready!

Objective assessment: only one right answer

<u>Subjective</u> <u>assessment:</u> more than one correct

answer

Step 3:Collect Data

Observations

- Who, What, Where, When, How?
- Use a rubric or structured protocol to ensure
 - consistent data collection

Step 5: Analyze Data Quantitative

- Prepare the data: code, enter, and check for errors
- Run analyses: what differences and patterns do you see?
- Qualitative
 - · Coding start general...then get more specific
 - Use instruments and goals to guide analysis
- Integrate/Synthesize
 Use data from different sources to get the big
 - - pícture and draw conclusions

Step 6: Take Action!

- Report
 - Clear and concise; provides adequate evidence for claims and enough explanation to make sure readers understand your interpretation of the data
 - You don't have to report on every piece of data or every finding: Know when to say when!
- Make Recommendations/Changes
 - Be specific
 - Plan for further evaluation after changes are made

Evaluation Springboard

Evaluation Springboard responds to the need for knowledge and skills in evaluation for those who want to undertake or commission evaluations of informal science education projects.

While evaluation is about "de something, it is important to happens in real life. Often it to be made under pressure of where the project is so new gather information that can the implementation of the ir

We hope that this website p launching your own evaluati a basic understanding of the It's the key to determining t science projects.

Copyright 2006 ROCKMAN ET AL a Revised Copyright 2008 ROCKMAN

> ROCKMAN ET Independent
>
> Insightful
>
> Info

The development of Evaluation 5 S318A030015; West Virginia Der this material are those of the au Education.

Rockman et al

Independent · Insightful · Informative

Getting Started What is an Evaluati^{Wh}

valuation

Wh

How As greater demands are progoing-check on progress, m build powerful projects, you 掛 development of an evaluatio projects that have the great

THREE **BIG** QUESTIONS To simplify the concept of ev

1. Are you doing what y

- How well is it (the pro
- 3. Is what you're doing i

Many labels are used to desc of evaluation, but there are that are worth knowing about between them is a useful on

Evaluation Springboard

Getting Started Evaluation 101 **Case Studies** Resources Labs

Logic Consent 8 Models

Lab 1: Building a Logic Model

Evaluation

A logic model is a visual way of showing how you believe (or your theory behind how) your project will work to solve a problem.

Key Information: In a logic model, you describe and depict the relationship among these project factors:

Inputs / Resources

What materials, money, staff, and other assets are available and necessary for the project's operation?

Actions / Activities

What needs to be done to achieve the project goals?

Outputs

Think About	Activity	Link to	Resou
	the second se		

Question 1

Think about a project that you would be interesting in evaluating (or use one of the Case Studies you read). What are the goals or objectives of this project?

Question 2

What data and information already exist? What are the sources?

Question 3

Is a logic model needed for this project? Why?

Question 4